Устройство защиты от импульсных грозовых перенапряжений, схема подключения. Установка узип — схемы подключения, правила монтажа Что такое импульсное перенапряжение

Молния может стать причиной пожаров, сильных разрушений, взрывов, травмирования людей и животных, в том числе и смертельных случаев. Специалисты различают первичные и вторичные воздействия удара молнии. Первые возникают при прямом ее попадании в объекты. Непосредственное попадание атмосферного электричества в жилые и промышленные постройки может полностью разрушить их, убить человека или привести к техногенным авариям.

Вторичное воздействие молнии (электромагнитная или электростатическая индукция) вызывается близким с объектом разрядом молнии или заносом высоких потенциалов внутрь построек по подземным или наружным металлическим конструкциям, коммуникациям, воздушным линиям электропередач и проводам другого назначения, а также трубопроводам или кабелям.

Вторичное воздействие разрядов молнии негативно влияет на телефонию, электробытовые сети 220/380 В, системы мобильной связи, а также передачи информации и данных, спутникового и телевизионного вещания. Выход из строя даже на короткое время вышеперечисленных систем может привести к непоправимым последствиям, поэтому современные системы молниезащиты объектов включают защиту и от непосредственных ударов молнии, и от вторичных ее проявлений.

Что это такое импульсные перенапряжения

Кратковременный, но значительный скачок напряжения, а также появление на металлических конструкциях электродвижущей силы - называется импульсным перенапряжением. Специалисты обычно различают проявления электромагнитной и электростатической индукции, занос внутрь объекта высоких потенциалов, а также коммутационное перенапряжение.

Импульсное перенапряжение коммутационного происхождения связано с внезапной сменой режима работы в системе электроснабжения, при коротком замыкании, включении и отключении трансформаторов, включении резервного питания и т.д. При развитии данного типа перенапряжения накопленная в элементах сети энергия из-за резкой смены параметров режима работы приводит к развитию переходного процесса со значительным скачком напряжения.

Повышение напряжений в некоторых случаях может достигать значений в сотни раз выше, чем их нормальные эксплуатационные параметры. Это приводит не только к выходу из строя электрических и электронных устройств и приборов, систем электроснабжения, телекоммуникаций и связи, контроля и управления, но и может являться причиной пожара и даже смерти людей.

Причиной появления высоких напряжений обычно является разряд молнии, коммутационные процессы в системах электроснабжения, а также электромагнитные помехи, вызываемые мощными промышленными электроустановками. Различают перенапряжения:

  • коммутаций;
  • непосредственного разряда (при разряде во внешнюю молниезащиту или воздушные ЛЭП);
  • индуцированные (при разряде рядом со зданием или в близстоящие объекты).

Электромагнитная индукция после разряда молнии характеризуется образованием магнитного поля в контурах металлических коммуникациях различной формы с переменными во времени параметрами. При этом значение электродвижущей силы зависит от амплитуды и крутизны тока молнии, а также размеров и формы самого контура.

Индукция электростатической природы провоцируется скоплением под кучевыми облаками с определенным электрическим потенциалом зарядов с противоположным знаком. Но в земле и на проводящих конструкциях наземных промышленных или жилых объектов это накопление приводит к тому, что за время разряда молнии заряды не успевают стечь в землю и становятся причиной появления импульсного перенапряжения. Чаще всего разность потенциалов появляется между металлическими трубами (водопроводными или канализационными), электропроводкой расположенными в постройке и металлической крышей. При этом, чем выше постройка, тем больше значения накопленных потенциалов.

Примеры повреждений, вызванных вторичными воздействиями молнии

Разрушение телефонного аппарата и временнного вводного щита электроустановки


Характеристики импульсного перенапряжения

Энергонасыщенность современных промышленных и жилых объектов, наличие разветвленной электрической сети от проектировщиков систем защиты требует грамотного выбора устройств защиты от импульсных перенапряжений (УЗИП) . Для этого необходимо разобраться в основных параметрах, характеризующих возникающие импульсы перенапряжения, а именно:

  • форму волны тока (характеризуется временем нарастания и спада);
  • амплитуда тока.

Для описания токов разряда молнии применяют 2 вида формы волн: удлиненную (10/350 мксек) и короткую (8/20 мксек). Первая соответствует непосредственному (прямому) попаданию разряда молнии и показывает нарастание тока за 10 мксек до максимального импульсного значения (I imp) и снижению его показания в 2 раза за 350 мсек. Короткая волна наблюдается при удаленном разряде молнии и при коммутационных процессах. Она характеризует нарастание тока за 8 мксек до максимума (I max) и спад до половины значения за 20 мксек. Импульс 10/350 мксек воздействует на электросеть в десятки раз дольше, чем 8/20 мксек, поэтому он более опасен для защищаемых объектов.

Виды УЗИП

УЗИП имеют корпус из негорючего пластика и в большинстве случаев представляют собой разрядники или варисторы самых разных конфигураций. Сегодня ограничители импульсных перенапряжений имеют индикатор выхода из строя. Данные устройства необходимы для создания надежной и эффективной системы внутренней молниезащиты.

Разрядник обычно представляет собой электроприбор (открытого воздушного или закрытого типа) с двумя электродами. На них при увеличении напряжения до определенного значения они пробиваются, тем самым снимая импульс перенапряжения. Варистор является полупроводниковым устройством, имеющим симметричную крутую вольт-амперную характеристику. Принцип его действия заключатся в том, что при достижении на его контактах определенной величины напряжения, он быстро и значительно понижает значение своего сопротивления и пропускает ток.

Ограничители импульсных перенапряжений характеризуются параметрами номинального, импульсного напряжения и временного перенапряжения. В зависимости от мощности импульса, которое УЗИП может рассеять и в соответствии с ГОСТом Р 1992-2002 (МЭК 61643-1-98) выделяют 3 класса ограничителей:

  • I B (амплитуда 25-100 кА; для волны 10/350 мксек) - применяется в распределительных щитках;
  • II C (амплитуда 10-40 кА; для волны 8/20 мкс) - применяется в вводах электропитающих устройств, щитках помещений;
  • III D (амплитуда до 10 кА; для волны 8/20 мкс) - обычно устройства этого класса уже встроены в электроприборы.

Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже.

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на , либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники . Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН) . Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

Как обустроить защиту?

Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо , иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно класса III.

При подключении УЗИП необходимо предусмотреть их токовую защиту и защиту от коротких замыканий вводным автоматическим выключателем или плавкими предохранителями. Подробнее о монтаже данных защитных устройств мы расскажем в отдельной статье.

Вот мы и рассмотрели принцип работы УЗИП, классы и разницу между ними. Надеемся, предоставленная информация была для вас полезной!

Стандарт ГОСТ 13109-97 не дает никаких предельных и допустимых значений импульса, а только дает нам форму этого импульса и определение. Мы полагаем при измерениях, что в сети импульсов не должно случаться. И если они будут, то нужно будет разбираться и искать виноватых. При наших измерениях в сетях 0,4 кВ мы с проблемами импульса не сталкивались. Это и не мудрено — меряя на стороне 0,4 кВ любой импульс поглотиться или срежется ограничителями перенапряжений, но это тема для другой статьи. Но как говорится предупрежден, значит вооружен. Поэтому дадим в статье, то что знаем.

вот эти определения из ГОСТ 13109-97 :

импульс напряжения - резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд;

— амплитуда импульса - максимальное мгновенное значение импульса напряжения;

— длительность импульса - интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня;

От чего возникают импульсы?

Импульсные напряжения вызываются грозовыми явлениями, а также переходными процессами при коммутациях в системе электроснабжения. Грозовые и коммутационные импульсы напряжения существенно различаются по характеристикам и форме.

Импульсное напряжение – это резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня в течение 10-15 мкс (грозовой импульс) и 10-15 мс (коммутационный импульс). И если длительность фронта грозового импульса тока на порядок меньше, чем коммутационного, то амплитуда грозового импульса может быть на несколько порядков выше . Измеренное максимальное значение тока разряда молнии в зависимости от его полярности может изменяться от 200 до 300 кА, что происходит редко. Обычно этот ток достигает 30-35 кА .

На рисунке 1 приведена осциллограмма импульса напряжения, а на рисунке 2 – его общий вид.

Удары молнии в линии электропередачи или вблизи них в землю приводят к появлению импульсных напряжений, опасных для изоляции линий и электрооборудования подстанций. Основной причиной выхода из строя изоляции объектов электроэнергетики, перерывов электроснабжения и затрат на его восстановление является поражение молнией этих объектов.

Рисунок 1 — Осциллограмма импульса напряжения

Рисунок 2 — Общий вид импульса напряжения

Грозовые импульсы – распространенное явление. При разрядах молния попадает в грозозащитное устройство зданий и подстанций, соединенных кабелями высокого и низкого напряжения, линиями связи и управления. При одной молнии могут наблюдаться до 10 импульсов, следующих друг за другом с интервалом от 10 до 100 мс. При ударе молнии в заземляющее устройство его потенциал относительно удаленных точек повышается и достигает миллиона вольт. Это способствует тому, что в петлях, оборудованных кабельными и воздушными связями, индуцируется напряжение от нескольких десятков вольт до многих сотен киловольт. При попадании молнии в воздушные линии вдоль них распространяется волна перенапряжения, которая достигает сборных шин подстанции. Волна перенапряжения ограничивается либо прочностью изоляции при ее пробое, либо остаточным напряжением защитных разрядников, сохраняя при этом остаточное значение, достигающее десятков киловольт.

Коммутационные импульсы напряжения возникают при коммутациях индуктивных (трансформаторы, двигатели) и емкостных (конденсаторные батареи, кабели) нагрузках. Возникают они при КЗ и его отключении. Значения коммутационных импульсов напряжения зависят от типа сети (воздушная или кабельная), вида коммутации (включение или отключение), характера нагрузки и типа коммутационного устройства (предохранитель, разъединитель, выключатель). Коммутационные импульсы тока и напряжения имеют колебательный затухающий повторяющийся характер, обусловленный горением дуги.

Значения коммутационных импульсов напряжений длительностью на уровне 0,5 амплитуды импульса (см. рис. 3.22), равной 1-5 мс, приведены в таблице .

Импульс напряжения характеризуется амплитудой U имп.а, максимальным значением напряжения U имп, длительностью переднего фронта, т.е. интервалом времени от начала импульса t нач до момента достижения им максимального (амплитудного) значения t амп и длительностью импульса напряжения по уровню 0,5 его амплитуды t амп 0,5 . Две последние временные характеристики показывают в виде дроби ∆t амп /t имп 0,5 .

Значение коммутационных импульсных напряжений

Список использованных источников

1.Кужекин И.П. , Ларионов В.П., Прохоров В.Н. Молния и молниезащита. М.: Знак, 2003

2. Карташев И.И. Управление качеством электроэнергии / И.И. Карташев, В.Н. Тульский, Р.Г. Шамонов и др.: под ред. Ю.В. Шарова. – М. : Издательский дом МЭИ, 2006. – 320 с.: ил.

3. ГОСТ 13109-97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введ. 1999-01-01. Минск: ИПК Изд-во стандартов, 1998. 35 с.

Одним из факторов, приводящих к повреждениям электрооборудования, являются атмосферные перенапряжения , связанные с ударами молний. Действия атмосферного электричества разделяются на:

  • прямые удары молний электрооборудование;
  • удары молний рядом с электрооборудованием, воздействующие на него при помощи мощного электромагнитного импульса;
  • удары молний вдали от потребителей, электромагнитная волна от которых воспринимается полупроводниковыми устройствами телемеханики и связи и создает помехи для их работы.

Воздействия атмосферных перенапряжений характерны небольшой длительностью импульса – порядка десятков миллисекунд. Но на это время напряжение в сети многократно повышается. Это приводит к пробоям изоляции и повреждениям как линий связи, так и питающихся от них потребителей.

Для защиты от перенапряжений, создаваемых грозовыми разрядами, используют устройства, ограничивающие амплитудное значение напряжения до уровня, безопасного для изоляции электрооборудования.

Искровые и вентильные разрядники, ОПН

Первыми устройствами, примененными для ограничения величин перенапряжений в сети, были искровые разрядники . Действие их основано на пробое воздушного промежутка фиксированной длины при определенном напряжении.

Разрядник подключается между защищаемыми фазами и контуром молниезащиты. Для каждой из фаз устанавливается персональный элемент. Он может выполняться открытым и состоять из расположенных торцами напротив друг друга металлических прутков. А может состоять из электродов, заключенных в изолирующую оболочку.

В момент возникновения грозового перенапряжения искровой промежуток разрядника пробивается, и мощность импульса уходит в землю через контур молниезащиты. За счет этого уровень напряжения ограничивается. По окончании импульса дуга гаснет, и разрядник снова готов к работе. В нормальном режиме он не потребляет тока и не оказывает влияния на режим работы электроустановки.

Вторым устройством, защищающим изоляцию от перенапряжений, были вентильные разрядники . Они состоят из двух элементов, соединенных последовательно: многократного искрового промежутка и гасящего резистора. При перенапряжении искровые промежутки пробиваются, через них и резистор протекает ток. В результате снижается напряжение в сети. Как только возмущающее воздействие снимается, дуга в искровых промежутках гаснет, и разрядник приходит в исходное положение.

Вентильные разрядники герметичны и работают бесшумно, в отличие от искровых, выделяющих в атмосферу продукты горения дуги.

Вентильные и искровые разрядники применяются только в электроустановках высокого напряжения.

Предыдущие защитные устройства заменяются ограничителями перенапряжений (ОПН) .

Внутри ОПН находится варистор: резистор с нелинейной зависимостью сопротивления от приложенного к нему напряжения . При превышении порогового значения напряжения ток через варистор резко возрастает, предотвращая дальнейшее его повышение. При прекращении грозового или коммутационного импульса ОПН переходит в исходное состояние.


По сравнению с предыдущими устройствами ОПН надежнее и меньших габаритов. Их характеристики подбираются более точно, что позволило выработать гибкую стратегию их эффективного применения.


Модульные ОПН для сетей низкого напряжения получили название устройства защиты от импульсных перенапряжений (УЗИП) .

К ним относятся:


Форма волны импульсного перенапряжения стандартизирована для случаев:

  • прямое попадание молнии – 10/350 мкс ;
  • воздействие непрямого действия молнии – 8/20 мкс .


По назначению УЗИП по стандарту МЭК разделяются на типы 1-3, по ГОСТ Р 51992-2002 они разделяются на классы испытаний (I – III). Соответствие и назначение этих характеристик указано в таблице.

Типы по IEC 61643 Классы по ГОСТ Р 51992-2002 Назначение Место установки
1 I Для ограничения перенапряжений от прямых ударов молний На вводе в здание, в главном распределительном щите
2 II Для ограничения перенапряжений от далеких ударов молний и коммутационных перенапряжений На вводах, где не существует опасности прямых ударов
1+2 I+II Объединяются характеристики типов УЗИП 1 и 2 Как для типов 1 или 2
3 III Для защиты чувствительных потребителей. Имеют самый низкий уровень защитного напряжения Для непосредственной установки у потребителей

По конструктивному исполнению УЗИП выпускаются с разным числом полюсов: от одного до четырех.

Выбор УЗИП

Для начала нужно определить степень воздействия молний или коммутационных перенапряжений на защищаемый объект. Для этого используются данные об интенсивности грозовых разрядов в месте установки, учитывается наличие устройств молниезащиты, линий электропередачи и их протяженность. Если ввод в дом выполнен кабельной линией, то она более защищена от прямых ударов молний, чем воздушная.

Электроустановка здания разделяется на зоны, защищаемые УЗИП соответствующих классов. Задача такого разделения: ступенчато снизить уровень перенапряжения так, чтобы более мощные устройства гасили основную волну перенапряжения, а по мере ее продвижения по распределительной сети устройства низшего класса дополнительно снижали ее воздействие, обеспечивая минимум в точке подключения потребителей.

Одновременно с этим безопасность электрооборудования обеспечивается выбором класса изоляции, соответствующего зоне защиты .


На вводе в здание устанавливаются УЗИП типов 1 или 1+2 . Они выдерживают импульс от прямого удара молнии, снижая его до величины, допустимой для электрооборудования с классом изоляции IV (до 6 кВ) . Точка установки УЗИП – во вводном щитке, ВРУ (вводном распределительном устройстве) или ГРЩ (главном распределительном щитке).

Класс изоляции электрооборудования, расположенного в этих распределительных устройствах после УЗИП, должен быть не хуже III (до 4 кВ) .

Следующий рубеж защиты – распределительные щитки , подключенные к ВРУ или ГРЩ в глубине здания. На их входе устанавливаются УЗИП типа II , снижающие уровень перенапряжения до величины, приемлемой для электрооборудования с классом изоляции II (2.5 кВ) . Так защищаются потребители, включающиеся непосредственно в розетки питания и устройства освещения.

При необходимости защиты электрооборудования, наиболее чувствительного к помехам (компьютерная техника, устройства связи), применяются УЗИП типа 3 , устанавливающиеся в непосредственной близости от защищаемого объекта.

Требования к подключению УЗИП

При трехфазном питании и системе заземления TN-C к УЗИП подключаются все три фазы напряжения. В случае с системами TN-C-S или TN-S – к трем фазам добавляется нулевой рабочий проводник. Вывод «РЕ» соединяется с главной заземляющей шиной ВРУ или шиной РЕ распределительного щитка. Главная заземляющая шина соединяется с контуром заземления здания.

В связи с широким распространением полупроводниковой и микропроцессорной техники в производстве и в быту, вопрос защиты электрических сетей до 1000 В от коммутационных и грозовых перенапряжений сегодня становится особенно актуальным.

Дорогостоящая техника, изготовленная с применением полупроводниковых элементов, имеет слабую изоляцию, и даже незначительные повышения напряжения способны вывести ее из строя.

В соответствии с принятой номенклатурой, ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений (УЗИП) .

Принцип действия схож с принципом работы ограничителей перенапряжения (ОПН) и основывается на нелинейности вольтамперной характеристики защитного элемента. При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают 3 ступени защиты, каждая из которых рассчитана на определенный уровень импульсных токов и крутизны фронта волны.

УЗИП I - устройство 1-го класса устанавливается на вводе в здание и выполняет функцию первой ступени защиты от перенапряжений. Условия его работы наиболее тяжелые. Рассчитано такое устройство на ограничение импульсных токов с крутизной фронта волны 10/350 мкс. Амплитуда импульсных токов 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.

УЗИП II - применяют в качестве защиты от перенапряжений, вызванных переходными процессами в распределительных сетях, а также в качестве второй ступени после УЗИП I. Его защитный элемент рассчитан на импульсные токи с формой волны 8/20 мкс. Амплитуда токов находится в пределах 15-20 кА.

УЗИП III - применяют для защиты сетей от остаточных явлений перенапряжений после устройств первого и второго класса. Устанавливаются они непосредственно у защищаемого оборудования и нормируются импульсными токами с формой волны 1,2/50 мкс и 8/20 мкс.


Устройство . Устройства всех классов имеют схожее строение, различие заключается в характеристиках защитного элемента. Конструктивно, устройство состоит из неподвижного основания и съемного модуля. Основание крепится непосредственно к конструкциям распределительных шкафов на DIN- рейку.

Съемный модуль с помощью ножевых контактов вставляется в основание. Такая конструкция позволяет легко производить замену испорченного нелинейного элемента самостоятельно. В качестве нелинейного элемента применяют варисторы и разрядники различного исполнения. Их исполнение может быть одно-, двух- и трехполюсным, выбор зависит от количества проводов защищаемой сети.

Зарубежные производители оснащают свои изделия индикаторами срабатывания устройства, что позволяет визуально определить его исправность. В более дорогих моделях могут быть установлены терморасцепители, предотвращающие перегрев нелинейного элемента, не рассчитанного на длительное протекание токов.


Схема подключения . Для выполнения защиты от перенапряжения в электроустановках, токоведущие части намеренно соединяют с заземляющим контуром посредством элементов с нелинейной вольтамперной характеристикой.

В электроустановках до 1000 В для применения УЗИП обязательно наличие заземляющего проводника РЕ с нормируемым сопротивлением. Несмотря на то, что сами устройства рассчитаны на большие импульсные токи и напряжения, они не пригодны для длительного повышения напряжения и протекания токов утечки.

Многими производителями рекомендуется защищать УЗИП с помощью плавких вставок. Данные рекомендации объясняются более быстрым срабатыванием предохранителей в зонах импульсных токов, а также частыми повреждениями контактной системы автоматических выключателей при разрывании токов такой величины.

При выполнении трехступенчатой защиты от перенапряжений, устройства должны располагаться на определенном расстоянии друг от друга по длине провода. Например, от УЗИП I до УЗИП II расстояние должно быть не менее 15 м по длине соединяющего их провода. Соблюдение этого условия позволяет селективно отработать разным ступеням, и надежно погасить все возмущения в сети.

Расстояние между II и III ступенью 5 метров. При невозможности разнести устройства на предписанные расстояния, применяют согласующий дроссель, представляющий собой активно-индуктивное сопротивление, эквивалентное сопротивлению проводов.


Особенности выбора . Самым ответственным участком защиты от грозовых перенапряжений является ввод в здание. УЗИП на первом участке ограничивает самый большой импульсный ток. Ножевые контакты для УЗИП первого класса представляют наибольшую уязвимость устройства.

Импульсные токи амплитудой 25-50 кА сопровождаются значительными электродинамическими силами, которые могут привести к выскакиванию сменного модуля из контактов ножевого типа и лишить электрическую сеть защиты от перенапряжения, поэтому, в качестве первой ступени лучше применять УЗИП без съемного модуля.

При выборе защиты первого класса отдавать предпочтение лучше устройствам на базе разрядников. Изготовление варисторного УЗИП на импульсный ток более 20 кА - дело достаточно трудоемкое и затратное, поэтому, их серийный выпуск неоправдан.

Так, если изготовителем на варисторном устройстве указан номинальный Iimp более 20 кА, следует с осторожностью отнестись к такой покупке; возможно производитель вводит вас в заблуждение.

УЗИП с применением разрядника с открытой камерой представляет опасность при срабатывании, поэтому его применение обосновано в распределительных шкафах, где присутствие человека исключено, когда защищаемый участок находится в работе. Протекание импульсного тока по контактам разрядника неизбежно ведет к зажиганию дуги.

В момент горения дуги, раскаленные газы и брызги расплавленного металла могут нанести вред здоровью и жизни человека. Шкаф, в котором установлено УЗИП такого типа, должен быть выполнен из несгораемого материала, с уплотнением всех отверстий.

В качестве нелинейного элемента могут применяться также разрядники со схемой поджигающего электрода. С помощью дополнительного электрода можно регулировать момент пробоя искрового промежутка и открытия разрядника. Применение поджигающего электрода позволяет снизить уровень импульсного напряжения и согласовать работу УЗИП разного класса.

Однако если схема управления поджигающим электродом выйдет из строя, на выходе получится защита с неизвестной характеристикой, возможно, не гарантирующая не только правильную работу, но работоспособность вообще.