Установка фундамента выше глубины промерзания. Фундамент ниже глубины промерзания грунта Почему нужно закапывать фундамент ниже промерзания

7.2. В целях обеспечения сохранности отмосток и их теплоизоляционного эффекта рекомендуется вместо отмосток на теплоизоляционных подушках применять для отмосток керамзитобетон с объемным весом в сухом состоянии от 800 до 1000 кгс/м 3 при расчетной величине коэффициента теплопроводности соответственно в сухом состоянии 0,2-0,17 и в водонасыщенном 0,3-0,25 ккал/м·ч·°С.

Укладку отмостки из керамзитобетона следует производить только после тщательного уплотнения и планировки грунта возле фундаментов у наружных стен.

Керамзитобетонную отмостку желательно укладывать на поверхность грунта с расчетом меньшего ее водонасыщения. Не следует укладывать керамзитобетон в открытое в грунте корыто на толщину отмостки. Если же по конструктивным особенностям этого избежать нельзя, то необходимо предусмотреть дренажные воронки для отвода воды из-под керамзитобетонной отмостки.

Конструкция керамзитобетонной отмостки принимается простейшей формы в виде ленты, размеры которой назначаются в зависимости от расчетной глубины промерзания грунта по табл. 5.

Таблица 5

По данным экспериментальной проверки теплоизоляционного эффекта отмостки на керамзитовой подушке толщиной 0,2 м и шириной 1,5 м глубина промерзания грунта у ограждения зимних теплиц уменьшалась в 3 раза и коэффициент теплового влияния отапливаемой теплицы с отмосткой на керамзитовой подушке m t получен в среднем 0,269.

В такой же экспериментальной проверке на строительных объектах нуждаются предлагаемые размеры керамзитобетонных отмосток и конструкций незаглубляемых и малозаглубляемых железобетонных фундаментов на керамзите для временных зданий и сооружений строительных баз теплоэлектростанций.

8. Указания к производству строительных работ по нулевому циклу

8.1. К производству работ нулевого цикла предъявляются следующие требования: избегать избыточного водонасыщения пучинистых грунтов в основании фундаментов, предохранять их от промерзания в период строительства и своевременно оканчивать земляные работы по засыпке пазух и планировке площадки вокруг строящегося здания.

В практике строительства иногда на пониженных площадках применяется подсыпка грунта при помощи рефулирования со дна водоема мелкозернистого или пылеватого песка. Поскольку гидромониторами песок вместе с водой выливается из труб на площадку (с которой вода скатывается, а грунт оседает), следует предусмотреть дренирование песчаного намытого слоя в целях его самоуплотнения и снижения водонасыщения.

Обычно намытые мелкие и пылеватые пески долгое время находятся в водонасыщеном состоянии, поэтому такие грунты при промерзании оказываются сильнопучинистыми и в то же время слабоуплотненными.

При использования рефулированных грунтов в качестве естественных оснований нельзя допускать промерзания грунтов под фундаментами и укладывать фундаменты на промороженный грунт даже для малоэтажных зданий.

Там, где здания уже построены или находятся в стадии строительства, не следует допускать намыв пучинистых грунтов ближе 3 м от фундаментов наружных стен.

Способ производства земляных работ с применением гидромеханизации безвредно можно применять в южных районах нашей страны, где нормативная глубина промерзания грунтов не более 70-80 см, а также при непучинистых грунтах по всей территории СССР. Но на площадках, сложенных пучинистыми грунтами, разработку грунтов при помощи гидромеханизации производить не следует, так как этот способ водонасыщает грунты, что нарушает требования п.п. 3.36-3.38, 3.40 и 3.41 главы СНиП по проектированию оснований зданий и сооружений о предохранении грунтов от избыточного водонасыщения поверхностными водами. Категорического запрещения в применении разработки грунтов способом гидромеханизации в принципе нет, но при этом способе нужно предпринять необходимые гидромелиоративные мероприятия по осушению грунтов в основании фундаментов я дать надлежащие технико-экономические обоснования.

8.2. При устройстве фундаментов на пучинистых грунтах необходимо стремиться при рытье котлованов землеройными механизмами к соблюдению требований действующих нормативно-технических документов на производство и приемку земляных работ. Следует отрывать траншеи для укладки ленточных сборных и монолитных фундаментов небольшой ширины с тем расчетом, чтобы ширину пазух можно было перекрыть отмасткой или гидроизоляционным экраном. После монтажа сборных фундаментов или укладки бетона в монолитный фундамент следует немедленно произвести обратную засыпку пазух с тщательным уплотнением грунта и обеспечением стока от скопления поверхностных вод вокруг здания, не дожидаясь окончательной планировки площадки и укладки отмосток.

8.3. Открытые котлованы и траншеи не следует оставлять на длительное время до установки в них фундаментов, так как большой разрыв во времени между открытием котлованов и укладкой в них фундаментов в большинстве случаев приводит к резкому ухудшению грунтов в основании фундаментов вследствие периодического или постоянного затопления дна котлована водой. На пучинистых грунтах к вскрытию котлована следует приступать только тогда, когда на строительную площадку завезены фундаментные блоки и все необходимые материалы и потребное оборудование.

Все работы по укладке фундаментов и засыпке пазух желательно выполнять в летний период, когда работы можно производить быстро и с высоким качеством при сравнительно невысокой стоимости земляных работ. Сезонность производства работ по нулевому циклу на пучинистых грунтах было бы полезно соблюдать.

При необходимости вскрытия котлованов и траншей на глубину больше 1 м в зимнее время, когда грунт находится в твердо-мерзлом состоянии, часто приходится прибегать к искусственному оттаиванию грунта различными способами, что ускоряет выполнение земляные работ и не ухудшает строительные свойства грунтов в основании фундаментов. Не следует применять оттаивание пучинистых грунтов путем пуска водяного пара в пробуренные скважины, так как при этом резко повышается влажность грунта за счет конденсата водяного пара.

8.4. Засыпку пазух надлежит выполнять после окончания бетонирования монолитных фундаментов и после укладки цокольного перекрытия при сборно-блочных фундаментах. Следует иметь в виду, что засыпка пазух возле фундаментов бульдозером не обеспечивает надлежащего уплотнения грунта и вследствие этого происходит аккумуляция большого количества поверхностных вод, которые неравномерно водонасыщают грунты возле фундаментов и при замерзании создают благоприятные условия для деформации фундаментов и надфундаментного строения касательными силами морозного выпучивания. Еще хуже бывает, когда засыпка пазух выполняется в зимнее время мерзлым грунтом и без уплотнения. Уложенная отместка возле фундаментов обычно проваливается после оттаивания и самоуплотнения грунта в пазухах.

Пазухи надлежит засыпать тем же талым грунтом с тщательным послойным уплотнением.

Применение механизмов для уплотнения грунта при засыпке пазух затрудняется из-за наличия цокольных стенок, создающих стесненные условия для работы механизмов.

8.5. Согласно требованию главы СНиП по проектированию оснований зданий и сооружений надлежит применять мероприятия по предотвращению промерзания пучинистого грунта ниже подошвы фундамента в период строительства.

В случае перезимования уложенных фундаментов и плит не следует забывать о предохранении грунтов от промерзания, особенно когда фундаменты будут нагружаться при кладке или монтаже стен здания до оттаивания грунтов ниже подошвы, фундаментов. В целях предохранения грунтов от замерзания в основании фундаментов применяют различные способы, начиная с засыпки грунтом и кончая покрытием фундаментов и плит теплоизоляционными материалами. Отложения снега являются также хорошим теплоизолирующим материалом и его можно использовать в качестве теплоизолятора.

Железобетонные плиты, толщиной более 0,3 м на сильнопучинистых грунтах должны быть укрыты при нормативной глубине промерзания более 1,5 м минеральными плитами в один слой, шлаковатными магами или керамзитом с объемным весом 500 кгс/м 3 и коэффициентом теплопроводности 0,18 слоем 15-20 см.

Если здание возведено, а грунты в основании фундаментов находятся в мерзлом состоянии, то необходимо позаботиться об обеспечении равномерного оттаивания грунтов под подошвой фундамента путем укладки теплоизоляционных покрытий с наружных сторон фундаментов и обогревом грунтов внутри здания, для чего можно использовать электроэнергию или нагревание воздуха в подполье калориферами и временными отопительными печами.

Стены зимней кладки для равномерного оттаивания с южной стороны приходится завешивать рогожами, щитами, толем, фанерой или соломенными матами для защиты от обрушения при быстром и неравномерном оттаивании.

В качестве теплоизоляции на период оттаивания грунтов возле фундаментов снаружи здания на 1-1,5 месяца с южной стороны можно применить складирование бетонных блоков, кирпича, щебня, песка, керамзита и других материалов.

Из-за неравномерного оттаивания грунтов под наружными и внутренними поперечными несущими стенами происходит образование сквозных трещин под и над проемами на поперечной внутренней несущей стене. Эти трещины обычно расширяются и иногда вверху доходят до десятков сантиметров, при этом у наружных продольных стен наблюдается крен с отклонением верхней части в сторону от здания. При больших кренах приходится разбирать значительные участки наружных и внутренних стен.

Крен наружных стен часто образуется в процессе промерзания грунта в январе-марте, когда фундаменты наружных стен заложены на расчетную глубину промерзания грунта, а под внутренние несущие стены фундаменты заложены мелко (на половину или даже одну треть от нормативной глубины промерзания грунтов).

Под действием нормальных сил морозного пучения грунтов на подошву фундаментов внутренних несущих стен также появляются расширяющиеся кверху сквозные трещины, при этом верх наружных стен заметно отклоняется от вертикали. Крем наружных стен зависит от высоты поднятия внутренней каменной стены и ширины раскрытия одной или двух трещин на верху внутренней стены.

8.6. При первом обнаружении хотя бы мелких волосяных трещин на стенах каменных зданий необходимо установить причину их появления и принять меры по прекращению расширения этих трещин. Если трещины появились под действием нормальных сил морозного пучения, то нельзя допускать заделки этих трещин цементным раствором. Основным мероприятием в данном случае будет оттаивание грунта внутри здания под фундаментами внутренних несущих стен, что вызовет осадку фундамента и трещины закроются частично или полностью. От продолжения возведения стен или монтажа сборных домов при промороженном основании следует воздержаться до полного оттаивания грунтов под фундаментами и до стабилизации осадки фундаментов после оттаивания грунтов.

8.7. На строительных площадках во время производства работ грунты в основании локально водонасыщаются от утечки воды в грунт из неисправной водопроводной сети. Это приводит к тому, что на отдельных участках глинистые грунты из непучинистых и слабопучинистых превращаются в сильнопучинистые со всеми вытекающими последствиями.

Для предохранения грунтов, в основании фундаментов от локального водонасыщения в период строительства линии временного водоснабжения стройки следует укладывать по поверхности, с тем чтобы легче было обнаружить появление утечки воды и своевременно устранить повреждения в водопроводной сети.

Достаточно часто после окончания зимнего сезона на фасадах и цоколях коттеджей появляются трещины, перекашиваются дверные коробки или появляются щели в оконных рамах. Причиной этих неприятностей в большинстве случаев является подвижка оснований фундаментов, вызванная силами морозного пучения грунта, которые возникают в результате увеличения объема грунта при его замерзании.

Практически все грунты (кроме скальных) могут подвергаться морозному пучению, но в наибольшей степени этот недостаток присущ глинистым грунтам (суглинки, глины, супеси, мелкие и пылеватые пески), а также пескам, содержащим пылевато-глинистые частицы. Пески гравелистые, крупные и средние, не содержащие пылевато-глинистых частиц, считаются непучинистыми.

Как уже отмечалось, морозному пучению подвергаются грунты, содержащие мельчайшие пылеватые и глинистые частицы. По сравнению с крупными и средними песками, эти частицы очень хорошо связывают воду. При замерзании насыщенная водой масса значительно увеличивается в объеме, начинает давить на находящиеся в грунте конструкции и выталкивать их из земли.

Деформации морозного пучения - результат воздействия на конструкцию так называемых нормальных и касательных сил. Первые возникают под подошвой фундамента в результате замерзания и увеличения объема пучинистого грунта, вторые - из-за вертикального смещения грунта, примерзшего к боковым поверхностям фундамента или к стенам подвала. Кроме того, увеличившийся в объеме замерзший грунт начинает давить перпендикулярно поверхности стен подвалов, вызывая деформацию фундаментов в горизонтальном направлении.

Процесс пучения усиливается при увеличении влажности пучинистых грунтов в результате атмосферных осадков (в частности, обильных осенних дождей), при капиллярном поднятии влаги и повышении уровня грунтовых вод.


В Подмосковье 80% всех грунтов относится к категории пучинистых, а глубина их промерзания в зимнее время может достигать 1,4 м. Поэтому защита фундаментов, труб, проложенных под землей, площадок, покрытых асфальтом или плитками, а также подъездов к гаражам от деформаций, вызванных силами морозного пучения, является насущной необходимостью. Для уменьшения воздействия сил морозного пучения на подземные конструкции при строительстве и ремонте дома рекомендуется выполнить следующие мероприятия (табл. 1).

Таблица 1.

Причины, вызывающие деформации конструкций Конструктивное решение
Воздействие нормальных сил морозного пучения на подошву фундамента Устройство подсыпки (1) толщиной 100-200 мм под подошву фундамента из непучинистого грунта: гравелистого, крупного или средней крупности песка, гравия, щебня или песчано-щебеночной смеси (песок 40%, щебень 60%)
Воздействие касательных сил морозного пучения на боковые поверхности фундаментов и стен подвалов устройство обмазки (2) боковой поверхности фундаментов и стен подвалов, уменьшающей их шероховатость и силы сцепления со смерзшимся пучащимся грунтом на глубину промерзания;
обратная засыпка (3) пазух фундамента на всю глубину промерзания непучинистым грунтом; ширина засыпки по низу выемки должна быть не менее 0,5 м.
Увлажнение пучинистого грунта атмосферными осадками Устройство отмостки (4) с уклоном 3-5 % в сторону от дома, ширина которой превышает ширину выемки для обратной засыпки
Увеличение влажности пучинистого грунта из-за повышения уровня грунтовых вод Устройство дренажа (5) для понижения уровня грунтовых вод и их отвода от фундамента
Заиливание непучинистых грунтов пылевато-глинистыми частицами Защита песчаной подсыпки от проникновения в нее частиц пучинистых грунтов специальными фильтрующими материалами (6)
Защита фундаментов и стен подвалов от деформаций морозного пучения.

При возведении зданий на пучинистых грунтах необходимо под основанием фундамента устроить подушку из промытого песка, гравия или гравелисто-щебеночную подсыпку. Основание из этих непучинистых материалов будет препятствовать воздействию на подошву фундамента нормальных (выталкивающих) сил морозного пучения.

Следует отметить, что при повышении уровня грунтовых вод (в осенний период, а также во время таяния снегового покрова) подсыпка оказывается окруженной водой, насыщенной частицами пылевато-глинистого грунта. Мигрируя вместе с водой, эти частицы проникают в подсыпку и засоряют ее, постепенно превращая непучинистый грунт в пучинистый.

В результате после нескольких лет эксплуатации фундамент вновь оказывается стоящим на грунте, деформирующемся при замерзании. Предотвратить заиливание подсыпки позволяет использование специальных фильтрующих материалов (стеклохолст, "Тайпар" и т.п.), хорошо пропускающих воду, но препятствующих проникновению мельчайших пылевато-глинистых частиц в песчаную подушку.

Для уменьшения воздействия на фундамент касательных сил пучинистый грунт, соприкасающийся с вертикальными поверхностями фундамента или со стенами подвала, рекомендуется заменить непучинистым. Обратную засыпку, которая выполняется по всему периметру здания, необходимо (как и в предыдущем случае) защитить слоем фильтрующего материала (рис. 1).

Значительное увлажнение пучинистых грунтов приводит к тому, что при замерзании они увеличиваются в объеме намного больше, чем грунты с меньшей влажностью. Это влечет за собой возрастание уровня деформаций, и, как следствие, - необходимость более серьезной защиты фундаментов от воздействия сил морозного пучения. Одним из путей уменьшения активности пучинистых грунтов является устройство дренажа, позволяющее понизить влажность грунта за счет снижения уровня грунтовых вод.

Традиционная конструкция представляет собой систему дренажных труб, размещенных в слое промытого гравия, задерживающего частицы грунта. Трубы укладывают с небольшим уклоном, обеспечивающим сток воды в специальный колодец или канализацию.

Несмотря на наличие гравийного фильтра, в процессе эксплуатации дренажной системы происходит постепенное засорение дренажных отверстий частицами грунта. Прочистка дренажа - процесс достаточно трудоемкий, требующий устройства специальных колодцев. Предотвратить засорение системы можно путем укладки вокруг дренажных труб фильтрующего материала ("Тайпар" или стеклохолст), не пропускающего самые мелкие частицы и обеспечивающего эффективную работу дренажной системы на протяжении длительного времени (рис. 2).

При наличии фильтрующего материала укладывать слой гравия вокруг дренажных трубок не обязательно, но рекомендуется для увеличения площади проникновения воды в дренажную систему.

Рис. 2

1. существующий фундамент; 2. дренажные трубки; 3. фльтрующий материал; 4. промытый гравий.

Утепление оснований фундаментов

Рассмотренные мероприятия дают возможность уменьшить воздействие сил морозного пучения, но не ликвидировать их причину. Исключить морозное пучение грунтов позволяет устройство теплоизоляции вокруг здания. Сущность этого способа заключается в том, что находящийся около здания грунт защищается теплоизоляционными материалами от промерзания и тем самым ликвидируется причина, вызывающая морозное пучение.

Для устройства теплоизоляции материала используют утеплители, способные сохранять необходимые теплозащитные качества во влажной среде и воспринимать нагрузки от расположенных над ними конструкций. Этим требованиям в наибольшей степени отвечает пенополиуретан (ППУ) и экструдированный пенополистирол (ЭПП) различных марок.

, является самым эффективным, как в пересчете на требуемую толщину теплоизоляции, так как обладает самым низким коэффициентом теплопроводности, так и по сроку службы, благодаря уникальной химической и биологической стойкости. ППУ бывает в плитах (в последнее время в силу широкого распространения ЭПП мало распространен) и в виде напыления.

имеет наибольшую эффективность утепления при использовании в водонасыщенных грунтах, поскольку, благодаря бесшовности, обеспечивает также дополнительную гидроизоляцию, что устраняет термодинамические конвенционные потоки влаги охлаждающиефундаменты и цокольные этажи.

Обладает самыми лучшими характеристиками по теплопроводности, прочности и долговечности, вследствие наиболее качественной микропористой структуре. Немаловажное значение имеет тот факт, что предлагаемая технология может быть реализована как при возведении новых домов, так и в процессе эксплуатации существующих построек, причем размещение теплоизоляционного материала по периметру здания позволяет не только защитить грунт от промерзания, но и утеплить подвальные помещения (рис. 3).

Грунт вокруг дома выкапывают на глубину 0,5-0,6 м. Размеры выемки должны обеспечить укладку утеплителя шириной не менее 1,2 м. После этого на дно траншеи насыпают слой промытого песка толщиной не менее 200 мм, устраивают небольшой уклон песчаной подушки в сторону от фундамента и тщательно утрамбовывают.

На песок укладывают теплоизоляционные плиты из экструдированного пенополистирола. Толщина плит принимается в зависимости от коэффициента теплопроводности утеплителя (табл. 2).

Таблица 2.

Утеплитель ППУ напылением Пеноглас ППУ напыле-ниием прочие ППУ плиты ЭПП Стиро-форм, Стиродур ЭЭП прочие Пенополисти-рол
Коэффициент теплопроводности утеплителя/ в пироге с учетом щелей Вт/м °С 0,02/ 0,02 0,035/ 0,035 0,03/ 0,045 0,03/ 0,045 0,036/ 0,054 0,04/ 0,065
Толщина утеплителя не менее, мм 40 70 90 90 100 120

Не следует забывать, что потери тепла через наружные углы здания значительно превышают потери через гладь стены, поэтому в зоне углов необходимо предусмотреть дополнительное утепление.

Для этого на расстоянии 1,5-2 м от угла укладывают утеплитель толщиной в 1,4-1,5 раза большей, чем приведено в таблице (рис. 4).

Затем утеплитель засыпают слоем песка или гравия толщиной не менее 300 мм до поверхности грунта. Такое утепление будет препятствовать промерзанию грунта и появлению сил морозного пучения.

Утепление основания крыльца

Много неприятностей владельцам загородных домов доставляют сезонные деформации крыльца и лестницы при входе в дом.

Причиной этого является морозное пучение грунта, вызывающее выпирание относительно легкой конструкции лестницы. Кроме того, основание крыльца или лестницы находится на глубине меньшей, чем подошва фундамента, поэтому силы морозного пучения вызывают особенно сильные деформации этих конструкций.

Наиболее радикальным способом защиты крыльца от выпирания является защита его основания от промерзания (рис. 5). Для этого делают выемку на 700 мм глубже подошвы крыльца или лестницы. На дне выемки устраивают песчаную подсыпку толщиной не менее 400 мм из промытого песка или гравия. На уплотненное основание укладывают плиты ЭПП или ППУ, либо толщина которых принимается в соответствии с вышеприведенной таблицей. Поверх утеплителя насыпают слой песка не менее 50 мм, на который устанавливается лестничный марш или крыльцо. Для защиты основания от промерзания утеплитель должен выступать за границы крыльца на 1,2 м.

Защита подъездов к гаражу от деформаций, вызванных морозным пучением грунтов

На подъезде к гаражу в результате морозного пучения грунтов могут появиться неровности, мешающие нормальному открыванию ворот.

Площадка перед гаражом постоянно очищается от снега, поэтому земля промерзает на большую глубину, что влечет за собой увеличение уровня деформаций грунта, вызванных силами морозного пучения. Предотвратить эти явления можно путем устройства теплоизоляции под дорогой, ведущей к гаражу. Для этого под площадкой или дорогой выкапывают небольшой котлован глубиной около 400 мм. Его ширина с каждой стороны должна быть на 1,2 м больше ширины дороги (рис. 6).

На дне котлована устраивают песчаную или гравийную подсыпку толщиной не менее 100-200 мм, на которую укладывают плиты из экструдированного пенополистирола требуемой толщины. Следует отметить, что, помимо способности сохранять высокие теплозащитные характеристики в грунтовой среде, экструдированный пенополистирол является материалом, способным воспринимать достаточно большие нагрузки, в частности от асфальтового покрытия дороги и машины, стоящей на нем.

Утеплитель, находящийся под полотном дороги, засыпают дополнительным слоем песка толщиной 200 мм, по которому укладывают покрытие из плит или асфальта. На песчаной подсыпке можно установить бортовой камень, заглубив его в песок приблизительно на 200 мм. Утеплитель, расположенный вне эксплуатируемого покрытия, засыпается слоем песка (20-30 мм), после чего выемка заполняется грунтом и выравнивается.

Аналогичным образом утепляют пешеходные дорожки и площадки перед домом, покрытые плиткой. Не следует забывать, что выемка под утеплитель должна быть с каждой стороны на 1,2 м шире площадки или дорожки (рис. 7).

Рис. 7 Рис. 8
  1. песчаная или гравийная подсыпка толщиной 200 мм;
  2. слой песка толщиной 30 мм;
  3. обратная засыпка песком и грунтом;
  4. покрытие площадки;
  5. песчаная подсыпка.
  1. песчаная или гравийная подсыпка толщиной 100 мм;
  2. изолируемые трубы;
  3. гравийно-песчаная смесь толщиной 100 мм;
  4. экструдированный пенополистирол;
  5. засыпка песком, гравием или грунтом.

Защита трубопроводов от промерзания

Рис. 9

Как правило, трубопроводы инженерных коммуникаций (водопровод и канализация) прокладывают ниже уровня промерзания грунта. Однако на входе в дом участки трубопроводов поднимаются ближе к поверхности и оказываются на глубине промерзания, поэтому эту зону необходимо утеплить.

Устройство траншей глубиной 1,5-2 м для прокладки трубопроводов с последующей обратной засыпкой занимает много времени и является достаточно трудоемким процессом. Уменьшить глубину заложения коммуникаций можно путем устройства теплоизоляции, защищающей трубы и прилегающий к ним участок грунта от замерзания (рис. 8). Помимо этого, в пучинистых грунтах, имеющих небольшую глубину заложения, позволит защитить трубы от деформаций грунта, вызванных силами морозного пучения. Следует отметить, что эти работы можно производить не только в процессе прокладки новой линии, но и во время функционирования существующей.

Таблица 3.

На дне отрытой траншеи устраивают утрамбованную песчаную или гравийную подсыпку толщиной около 100 мм, укладывают на нее изолируемые трубы и закрывают их слоем песка или гравия (не менее 100 мм), на который (после утрамбовки) кладут плиты экструдированного пенополистирола или напыляют ППУ. Сверху утеплитель засыпают песком или гравием (20-30 мм), а затем грунтом.

Существующие трубопроводы можно утеплить, расположив теплоизоляцию не только сверху, но и по бокам (рис. 10), а при прокладке новых инженерных коммуникаций их рекомендуется поместить в теплозащитный канал из ППУ (в настоящий момент в продаже имеются трубы с изоляцией ППУ) либо напылить (рис. 11).

При использовании плитного утеплителя, для обеспечения надежности теплоизоляции (минимизация щелей) плиты утеплителя, образующие теплоизоляционный канал, желательно соединить друг с другом при помощи шурупов, однако трубопроводы все же лучше либо приобретать в теплоизоляции ППУ (предизолированные трубы) либо напылять пенополиуретаном имеющиеся.

Для малоэтажных зданий с малонагруженными фундаментами необходимо принимать меры, направленные на снижение сил морозного пучения. В целях уменьшения воздействия касательных сил пучения, возникающих при смерзании грунтов засыпки с поверхностью фундаментов, следует:

  • Возводить фундаменты простейших форм с минимальной площадью поперечного сечения;
  • Предпочтение отдавать столбчатым или свайным фундаментам с фундаментными балками;
  • Уменьшать площадь смерзания грунта с фундаментами;
  • Обеспечивать заанкеривание фундаментов в слое грунта ниже отметки сезонного промерзания;
  • Снижать глубину промерзания грунта около фундаментов теплоизоляционными материалами;
  • Применять обмазки и обертки;
  • Проводить соответствующие мероприятия по увеличению нагрузок для компенсации касательных сил пучения;
  • Производить полную или частичную замену пучинистого грунта непучинистым.

При строительстве малоэтажных зданий энергетического и сельскохозяйственного назначения (см. фундамент загородного дома) на пучинистых грунтах применяют железобетонные фундаменты в виде плит или лежней без заглубления. Этот способ значительно удешевляет строительство и, как показала экспериментальная проверка, обеспечивает эксплуатационную пригодность зданий и технологического оборудования. При этом полностью исключается воздействие касательных сил морозного пучения.

В качестве лежней можно использовать железобетонные балки, панели перекрытий, дорожные и аэродромные плиты , сваи и т. п. Лежни и плиты укладывают на выровненную песчаную подготовку толщиной 150-200 мм.

При монолитном исполнении подобных фундаментов рекомендуется перед бетонированием уложить на песчаную подготовку водонепроницаемую пленку для устранения утечки из бетона цементного молока. Обычно для армирования плит толщиной 150-200 мм, под жилой одноэтажный кирпичный дом требуется двойная арматура диаметром 10-12 мм с шагом 200-250 мм плюс армированный пояс в уровне низа перекрытия над первым этажом из 3-4 стержней диаметром 10 мм. (см. рис. 1).

Интересны решения по устройству конструкций "нулевого" цикла по финской технологии (например, фирмы PAROC) с теплоизоляцией основания из плитного пенопласта. Примером устройства таких фундаментов может служить один из коттеджей в г. Зеленогорске (Ленинградская обл.). Грунты основания здесь представлены пылеватыми песками (плывунами), уровень подземных вод примерно на 1 м ниже нулевой отметки. Нормативная глубина промерзания 1,4 м. Здание одноэтажное, с мансардным этажом. Стены из пенобетона толщиной 300 мм, перекрытия по деревянным балкам. В зимний период здание может находиться некоторое время без отопления. Здесь, с целью демонстрации различных приемов, условно изображено гораздо больше противопучинных мероприятий, чем в реальном проекте (см. рис. 2).

Заслуживает внимания решение для легких зданий (щитовых домиков), когда необходимо прорезать значительную толщу слабых водонасыщенных грунтов (см. рис. 3). Такие фундаменты имеют гладкую поверхность, что позволяет успешнее справляться с возникающими касательными силами пучения, и глубину заложения ниже отметки промерзания, что исключает влияние нормальных сил пучения. Снижение касательных сил пучения может быть достигнуто обмазками или заменой верхнего слоя на другой, менее активный при пучении грунт, т. е. возможны варианты.

Все вышеизложенное не претендует на абсолютную полноту информации по данной проблеме. Автор стремился вкратце напомнить о существовании методов и приемов, которые выработаны практикой проектирования, строительства и эксплуатации зданий и сооружений.

Глубина заложения фундамента — проектируемая величина, которая зависит от типа здания или сооружения, климатической зоны, грунтов на участке и уровня залегания подземных вод. На эту величину также оказывает влияние конструкция здания (с подвалом или без), принцип его использования (с отоплением или без), этажность и масса.

Если говорить предметно, это та величина, на которую нужно будет закопать фундамент, для того чтобы он обеспечивал стабильную опору для сооружения. Бывают они двух видов:

Согласно нормам строительства для того чтобы противостоять силам морозного пучения, подошву необходимо заглублять на 15-20 см ниже уровня промерзания для грунта. При выполнении этого условия фундамент называют «глубокого заложения» или «заглубленный».

При глубине промерзания больше 2 метров проведение земляных работ имеет очень большие объемы, велик также расход материалов и очень высока цена. В этом случае рассматривают другие типы фундаментов — свайные или , а также возможность заложения выше нормативной точки промерзания. Но это возможно только при наличии грунтов с нормальной несущей способностью, обязательном утеплении цоколя и фундамента, а также при устройстве утепленной отмостки. В этом случае глубина заложения уменьшается в разы и обычно составляет менее метра.

Иногда фундамент заливают прямо на поверхности. Это — вариант для хозпостроек, причем, скорее всего из древесины. Только она в таких условиях способна компенсировать возникающие перекосы.

Предварительные изыскания

Перед началом планирования дома, вы должны решить, в каком месту участка хотите поставить дом. Если геологические исследования уже есть, учитывайте их результаты: чтобы меньше было проблем с фундаментом, имел он минимальную стоимость, желательно выбрать самый «сухой» участок: там, где грунтовые воды находятся как можно ниже.

Далее в выбранном месте проводят геологические исследования почвы. Для этого бурят шурфы на глубину от 10 до 40 метров: зависит от строения пластов и планируемой массы здания. Скважин делают как минимум, пять: в тех, точках, где планируются углы и посередине.

Средняя стоимость такого исследования — порядка 1000 $. Если стройка планируется масштабная, сумма не сильно отразится на бюджете (средняя стоимость дома 80-100 тыс. долларов), а уберечь может от многих проблем. Так что в этом случае заказывайте исследование у профессионалов. Если же поставить хотите небольшую постройку — небольшой дом, дачу, баню, беседку или площадку с мангалом, то вполне можно сделать исследования самостоятельно.

Исследуем геологию своими руками

Для проверки геологического строения грунтов своими руками вооружаемся лопатой. Во всех пяти точках — под углами будущего строения и в середине — придется копать глубокие ямы. Размер: метр на метр, глубина — не менее 2,5 м. Стенки делаем ровные (хотя бы относительно). Выкопав яму, берем рулетку и листок бумаги, замеряем и записываем слои.

Что можно увидеть в разрезе:


Часто сложности возникают при попытках различить глиносодержащие грунты. Иногда достаточно только на них посмотреть: если преобладает песок и имеются вкрапления глины — перед вам супесь. Если преобладает глина, но есть и песок — это суглинок. Ну а глина не содержит никаких вкраплений, копается тяжело.

Есть еще один метод, который поможет вам удостоверится насколько правильно вы определили грунт. Для этого из увлаженного грунта скатывают руками валик (между ладонями, как когда-то в детском саду) и сгибают его в бублик. Если все рассыпалось — это малопластичный суглинок, если развалилось на куски — пластичный суглинок, если осталось целым — глина.

Определившись с тем, какие грунты у вас находятся на выбранном участке, можно приступать к выбору типа фундамента.

Глубина заложения фундамента в зависимости от уровня грунтовых вод

Все особенности проектирования описаны в СНиП 2.02.01-83*. Обобщенно все можно свести к следующим рекомендациям:


Как видите, в основном уровень заложения фундамента фундамента определяется наличием подземных вод и тем, насколько сильно промерзают грунты в регионе. Именно морозное пучение становится причиной проблем с фундаментами (или изменение уровня грунтовых вод).

Глубина промерзания грунтов

Чтобы примерно определить до какого уровня промерзают грунты в вашем регионе, достаточно взглянуть на расположенную ниже карту.

По этой карте можно примерно определить уровень промерзания грунтов в регионе (чтобы увеличить размер картинки, щелкните по ней правой клавишей мышки)

Но это — усредненные данные, так что для конкретной точки определить значение можно с очень большой погрешностью. Для пытливых умов приведем методику расчета глубины промерзания грунта в любой местности. Вам нужно будет знать только средние температуры за зимние месяцы (те, в которых среднемесячная температура имеет отрицательные значения). Можете посчитать сами, формула и пример расчета выложены ниже.

D fn — глубина промерзания в данном регионе,

Do — коэффициент, учитывающий типы грунта:

  • для крупнообломочных грунтов он равен 0,34;
  • для песков с хорошей несущей способностью 0,3;
  • для сыпучих песков 0,28;
  • для глин и суглинков он равен 0,23;

M t — сумма среднемесячных отрицательных температур за зиму в вашем районе. Находите статистику службы метрологии по вашему региону. Выбираете месяца, в которых среднемесячная температура ниже нуля, складываете их, находите квадратный корень (есть функция на любом калькуляторе). Результат подставляете в формулу.

Например , собираемся строиться на глине. Средние зимние температуры в регионе: -2°C, -12°C, -15°C, -10C, -4°C.

Расчет промерзания грунта будет таким:

  1. M t =2+12+15+10+4=43, находим квадратный корень из 43, он равен 6,6;
  2. D fn = 0,23*6,6= 1,52 м.

Получили, что расчетная глубина промерзания по заданным параметрам: 1,52 м. Это еще не все, учесть нужно будет ли отопление, и, если будет, какие температуры будут поддерживаться в нем.

Если здание неотапливаемое (баня, дача, стройка будет идти несколько лет), применяют повышающий коэффициент 1,1, который создаст запас прочности. В этом случае глубина заложения фундамента 1,52 м * 1,1 = 1,7 м.

Если здание будет отапливаться, грунт тоже будет получать порцию своего тепла и промерзать будет меньше. Потому при наличии отопления коэффициенты понижающие. Их можно взять из таблицы.

Коэффициенты, учитывающие наличие отопления в здании. Получается, чем теплее в доме, тем на меньшую глубину нужно заглублять фундамент (чтобы увеличить размер картинки, щелкните по ней правой клавишей мышки)

Итак, если в помещениях будет постоянно поддерживаться температура выше +20°С, полы с утеплением, то глубина заложения фундамента будет 1,52 м * 0,7 = 1,064 м. Это уже меньшие затраты, чем углубляться на 1,52 м.

В таблицах и на картах приведен средний уровень за последние 10 лет. Вообще, наверное, в расчетах стоит использовать данные за самую холодную зиму, которая была за последние 10 лет. Аномально холодные и бесснежные зимы бывают примерно с такой периодичностью. И при расчетах желательно ориентироваться на них. Ведь вас мало успокоит, если отстояв 9 лет, на 10-й ваш фундамент даст трещину из-за слишком холодной зимы.

На какую глубину копать фундамент

Вооружившись этими цифрами и результатами исследования участка, нужно подобрать несколько вариантов фундаментов. Самые популярные — и столбчатый или свайный. Большинство специалистов сходится во мнении, что при нормальной несущей способности грунта их подошва должна находиться на 15-20 см ниже глубины промерзания. Как ее посчитать, мы рассказали выше.

Глубина заложения фундамента — это уровень, на который необходимо углубить фундамент

  • Опираться подошва должна на грунт с хорошей несущей способностью.
  • Фундамент должен погружаться в несущий слой минимум на 10-15 см.
  • Желательно чтобы грунтовые воды располагались ниже. В противном случае необходимо принимать меры по отведению воды или понижению их уровня, а это требует очень больших средств.
  • Если несущий грунт находится слишком глубоко, стоит рассмотреть вариант свайного фундамента.

Выбрав несколько типов фундамента, определив для них глубину заложения, проводят ориентировочный подсчет стоимости каждого. Выбирают тот, который будет экономичнее.

Еще обратите внимание, что для уменьшения глубины заложения фундамента можно применять утепленную у. При строительстве ленточного фундамента мелкого заложения отмостка обязательна.

Мелкозаглубленный фундамент

Иногда фундамент глубокого заложения строит очень дорого. Тогда рассматривают свайный (свайно-ростверковый) или фундаменты мелкого заложения (мелкозаглубленные). Их еще называют «плавающими». Их только два вида — это монолитная плита и лента.

Плитный фундамент считается самым надежным и легко предсказуемым. У него такая конструкция, что она может получить значительные повреждения только при грубых просчетах при проектировании. Тем не менее, и его можно испортить.

Тем не менее, застройщики плитные фундаменты не любят: они считаются дорогими. На них уходит много материала (в основном арматуры) и времени (на вязку той же арматуры). Но иногда плитный фундамент получается дешевле ленточного глубокого заложения или даже свайного. Так что не сбрасывайте его сразу со счетов. Он бывает оптимальным, если строить хотят тяжелое здание на пучнистых или сыпучих грунтах.

Мелкозаглубленная лента может иметь глубину от 60 см. При этом она должна опираться на грунт с нормальной несущей способностью. Если глубина плодородного слоя больше, то глубина заложения ленточного фундамента увеличивается.

С ленточными фундаментами мелкого заложения под легкие здания все очень просто: они работают хорошо. Комбинация со срубом из бревна или бруса — это экономный и в то же время надежный вариант. Если и случаются перегибы ленты, то упругая древесина отлично с ними справляется. Почти также хорошо себя на такой основе чувствует себя каркасный дом.

Более внимательно нужно просчитывать если на мелкозаглубленном ленточном фундаменте собираются строить задние из легких строительных блоков (газобетона, пенобетона, и т.п.). Они на изменения геометрии реагируют не самым лучшим образом. Тут нужна консультация опытного и, обязательно, компетентного специалиста с большим опытом.

А вот под тяжелый дом мелокзаглубленный ленточный фундамент ставить невыгодно. Чтобы передать всю нагрузку, его нужно делать очень широким. В этом случае, скорее всего, дешевле будет плитный.

Как работает мелкозаглубленый фундамент

Этот тип используется тогда, когда бороться с силами пучения слишком дорого и не имеет смысла. В случае с фундаментами мелкого заложения с ними и не борются. Их, можно сказать, игнорируют. Просто делают так, что фундамент и дом поднимаются и опускаются вместе с вспучившимся грунтом. Потому их еще называют «плавающими».

Все что при этом необходимо — обеспечить стабильное положение и жесткую связь всех частей фундамента и элементов дома. А для этого нужен правильный расчет.

Правильно рассчитанный фундамент способен выдержать значительные нагрузки и сохранить целостность несущих стен и всего дома на долгосрочный период. Проектирование любого строения начинается с расчетов основания.

Влияющие факторы

На выбор конструкции фундамента влияет много факторов, основными из которых считаются показатели, связанные с грунтом на участке:

  • Тип почвы.
  • Высота подъема грунтовых вод.
  • Глубина, на которую промерзает почва в зимний период.

Кроме этого, в расчет берутся такие показатели будущего дома, как этажность, выбранный материал возведения и конструктивные особенности (наличие подвала или без него).

Именно от этих факторов зависит расчетная глубина фундамента и объем земляных работ.

Глубина промерзания и необходимость ее учета

Уровень промерзания почвы является определяющим в расчете глубины заложения основы под здание. Выделяют два уровня промерзания:

  • Хорошими условия для закладки фундамента считаются в случае, если грунтовые воды располагаются ниже уровня промерзания почвы.
  • К сложным условиям для закладки и эксплуатации основы дома относится промерзание слоя грунта с грунтовыми водами. В этом случае почва в зимний период вспучивается, что приводит к возрастающим нагрузкам на основание строения.

Нормативные акты предписывают располагать фундамент ниже глубины промерзания грунта. Рассмотрим, почему.

Зимой к существующим вертикальным нагрузкам на основание (сила тяжести дома и сопротивление грунта) добавляются боковые, вызванные вспучиванием почвы. По мере промерзания грунта эти силы увеличиваются, оказывая колоссальное воздействие.

Если фундамент заложен недостаточно глубоко, то замерзшая земля начинает давить на подошву, «выталкивая» основание. Такие нагрузки могут достигать значения 10 тонн на квадратный метр площади. Помимо этого, такая сила неравномерна на разных участках, поэтому происходит небольшой перекос здания. Это наглядно видно, когда по стенам дома начинают появляться трещины, увеличивающиеся каждой весной, после оттаивания и проседания почвы под домом.

При правильном расчете и выборе глубины закладки основы строения (ниже уровня замерзания почвы), воздействующих сил становится меньше. Не возникает эффекта «выталкивания» дома из земли. Фундамент не перекашивается и прослужит продолжительное время без проседания и перекосов несущих стен.

Совет! Если грунтовые воды на вашем участке подходят слишком близко к поверхности и значительно усложняют возведение дома, попробуйте проложить несколько дренажных канав в ближайший овраг. Это осушит площадку под застройку и снизит пучинистость грунта.

Расчет промерзания грунта

Формула, по которой вручную рассчитывается этот параметр, выглядит так: h=vМ*k. По этой формуле требуется сумму среднемесячных температур умножить на специальный коэффициент, который применяется для каждого вида грунта:

  • глинистый - 0,23;
  • песчаный - 0,28;
  • гравистый - 0,30;
  • крупнообломочный -0,34.

Из полученного значения извлекают квадратный корень. Это долго и приходится обращаться к справочной литературе. Поэтому проще взять готовые усредненные значения промерзания грунта по регионам. Пример такой таблицы с некоторыми крупными городами приведен ниже.

Влияющие факторы

Отдельно отметим, что такие расчеты усреднены, и производятся без учета некоторых данных, влияющих на глубину промерзания. Приведем два фактора:

  1. Заснеженность региона. Помимо естественного увлажнения, снежный покров считается отличным теплоизолятором для почвы. Из этого следует, что чем больше снега на участке, тем меньше промерзает земля.
  2. Назначение здания. При строительстве жилого дома или отапливаемого здания, уровень промерзания уменьшается. Если сооружение в зимний период не отапливается, то земля промерзает больше среднего значения.

Берите эти факторы во внимание при планировании и разработке фундамента, поскольку различие с табличными данными составляют до 30%, что имеет значение при расчетах.